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Introduction 

when studying group theory one notice almost immediately that groups  of prime power 

orders are great significance, with Cauchy’s , Lagrange’s and Sylow ’s theorems  being three 

good examples of this. The study of these so called p-groups, where p is prime number, can 

for example be used to give a clear understanding of other groups as being compositions of 

different p-groups. 

           The sylow theorems are collection of theorems named after the Norwegian 

mathematician Pater Ludwig sylow (1872) that give detailed information about the number 

of subgroups of fixed order that given finite groups contains, the sylow theorems forms a 

fundamental part of finite group theory and have important application of finite simple 

group. Further this theorem also asserts of Lagrange’s theorem. 

Definition 1: Let X be a non empty set and ∗ is any operation. Then (X,∗) is said to group if 

(1) Closure property ∶ ∀ a , 𝑏𝜖 X, then the element a∗b∈ 𝑋 

(2) Associative property ∶ ( 𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐)  ∀  a, b, c ∈  X 

(3) Identity ∶ ∋ e ∈ 𝐺 such that 𝑒 ∗ 𝑎 = 𝑎 = 𝑎 ∗ 𝑒 ∀ a𝜖𝐺 

(4) Inverses∶ for each a 𝜖 G there exists an inverse element  𝑎−1 𝜖 𝐺 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎−1𝑎 =

𝑎𝑎−1 = 𝑒  
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Theorem 1.1 ∶- let G be a group, if G has exactly one element of order one, then this 

element is unique. 

Proof ∶-   let   𝑎, 𝑏 ∈ 𝐺 such that o (a) = 1 and o (b) =  1 

If o (a) = 1 then a = e     ...... (1) 

If o (b) = 1 then b = e    ....... (2) 

From equation (1) and (2), we get  

              a = b  

Then G has unique element of order one. 

Definition 2 ∶ 

 A group G is said to be Abelian group if  𝑎𝑏 = ba ∀ a, b ∈ G 

Theorem 2.1 ∶-   if every element of group G has self inverse then G is Abelian group. 

With the help of theorem 2.1, one can show that 𝐾4 (𝑘𝑙𝑒𝑖𝑛 𝑓𝑜𝑢𝑟 𝑔𝑟𝑜𝑢𝑝) is an Abelian 

group 

Solution We know that 𝐾4 = {𝑒, 𝑎 , 𝑏, 𝑎𝑏|𝑎2 = 𝑒, 𝑏2 = 𝑒, 𝑎𝑏 = 𝑏𝑎} 

Now   𝑒 ∈ 𝐾4 𝑡ℎ𝑒𝑛 𝑒−1 = 𝑒 ,  

𝑎 ∈ 𝐾4 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎2 = 𝑒 𝑡ℎ𝑒𝑛 𝑎−1  = 𝑎     

And similarly 𝑏 ∈ 𝐾4𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡𝑏2 = 𝑒 𝑡ℎ𝑒𝑛 𝑏−1 = 𝑏 

Now 𝑎𝑏 ∈ 𝐾4 ⇒ (𝑎𝑏)−1 =  𝑏−1𝑎−1  = 𝑏𝑎 = 𝑎𝑏 

⇒ (𝑎𝑏)−1 = 𝑎𝑏  

Then every element of 𝐾4 has self inverse 

∴ By above theorem 𝐾4 is an Abelian group 

 Definition 3 ∶ A group G is said to be a finite group if the set G has a finite number of 

elements. In this case, the number of elements is called the order of G, denoted by 𝑂(𝐺) 

Definition 4: Let G be a group and 𝑎 𝜖 𝐺 then order of element 𝑎 𝜖 𝐺 is the least positive 

integer n such that 𝑎𝑛 = 𝑒 and is denoted by 𝑂(𝑎) = 𝑛. 𝑖𝑓  then a is said to have a finite 

order  

If no such n exists for a then 𝑂(𝑎) = ∞ then a is said to have infinite order 

 The order of elements in 𝑍6 is evaluated as follows 
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Solution:  𝑍6  is finite group of order 6 with identity zero, then 𝑜(0) = 1,  

               1 ∈  𝑍6  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡    6.1 = 0 𝑡ℎ𝑒𝑛 𝑜(1) = 6 

2 ∈ 𝑍6 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 3.2 = 0 𝑡ℎ𝑒𝑛 𝑜(2) 

                                   3 ∈ 𝑍6 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 2.3 = 0 𝑡ℎ𝑒𝑛 𝑜(3) = 2,  

                                  4 ∈ 𝑍6 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 3.4 = 0 𝑡ℎ𝑒𝑛 𝑜(4) = 3 , 𝑎𝑛𝑑 

                                  5 ∈ 𝑍6 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 6.5 = 0 𝑡ℎ𝑒𝑛 𝑜(5) = 6 

 Therefore, 𝑍6 has one element of order 1, one element of order 2, two elements of order 

3 and two elements of order 6 

The order of elements of 𝑄4 (Quaternion group of order 8) is evaluated as follows:  

Solution: we know that 𝑄4 = { ±1, ±𝑖, ±𝑗, ±𝑘 | 𝑖𝑗 = −𝑗𝑖 = 𝑘, 𝑗𝑘 = −𝑘𝑗 = 𝑗, 𝑘𝑖 = −𝑖𝑘 =

𝑗} is group with identity 1 then 𝑂(1) = 1 

                             −1 ∈ 𝑄4 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (−1)2 = 1 𝑡ℎ𝑒𝑛 𝑂(−1) = 2, 

𝑖 ∈ 𝑄4 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (𝑖)4 = 1 𝑡ℎ𝑒𝑛 𝑂(𝑖) = 4, 

−𝑖 ∈ 𝑄4  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (−𝑖)4 = 1 𝑡ℎ𝑒𝑛 𝑂(−𝑖) = 4, 

Similarly, 𝑂(𝑗) = 4, 𝑂(−𝑗) = 4, 𝑂(𝑘) = 4, 𝑎𝑛𝑑 𝑂(−𝑘) = 4 

Then 𝑄4 has one element of order 1, one element of order 2 and six element of order 4 

Definition 5∶ A group G is said to be a cyclic group if ∋ element 𝑎 𝜖 𝐺 such that every 

element of G is generated by ‘a’ that is 𝐺 = < 𝑎 > such that  

𝐺 =< 𝑎 > = {an   ⃥ ⃥ 𝑛 𝜖 z}, Then element a is called generator of G 

Definition 6 ∶Let 𝜑 ≠ 𝐻 ⊆ 𝐺,H is subgroup of G if H is itself group with operation of G.  

Proper subgroup: Let H be subgroup of G and H ≠ 𝑮 is called a proper subgroup of G, 

while as H = G and H = {e} is called improper subgroup of G. 

Dihedral (𝑫𝒏): it is denoted by 𝐷𝑛. And defined by  

 𝐷𝑛 = {𝑥𝑖 . 𝑦𝑗|𝑥2 = 𝑒, 𝑦𝑛 = 𝑒, 𝑥𝑦 = 𝑦−1𝑥, 𝑖 = 0,1 𝑎𝑛𝑑 𝑗 = 0,1,2, … 𝑛 − 1} 𝑎𝑛𝑑 𝑂(𝐷𝑛) =

2𝑛 

Example of dihedral group  

𝐷4 = {𝑅0, 𝑅90, 𝑅180, 𝑅270, 𝐻, 𝑉, 𝐷, 𝐷̍} 

The dihedral group 𝐷4 is the symmetry group of the square. 

Let S=ABCD be the square. 
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The various mappings of S are: 

The identity mapping  𝑅0, the rotations are 𝑅90, 𝑅180, 𝑅270 around the centre of S 

anticlockwise respectively 

The reflections H and V are reflections in the x and y axis respectively. 

The reflection D in the diagonal through vertices A and C 

The reflection D̍ in the diagonal through vertices B and D 

Lagrange’s theorem: The order of any subgroup of a finite group divides the order of a 

group. 

Example:   H=<𝑅90> is subgroup of a group 𝐺 = 𝐷4 such that O (H) = 4 and O (𝐷4) = 

8  

Therefore, by Lagrange’s theorem 

O (H) ⁄ O (G) =4⁄8 

Remark: if d does not divides order of G; Then G has no subgroup of order d. 

 Example:  𝑄4  is a group of order 8 and 6 does not divides 8, And then 𝑄4 has no 

subgroup of order 6. 

Converse of Lagrange’s   theorem need not be true 

That is if d ⁄O (G) then G has may or may not be subgroup of order d. 

Example: 

𝐺 = 𝐴4 Then 𝑂(𝐴4) = 12 and 6⁄ O (𝐴4) but 𝐴4has no element of order 6 or 𝐴4 has no 

subgroup of order 6. 

Definition 7 ∶A subgroup H of group G is said to be normal subgroup of G if ∀  𝑥 ∈

𝐺 𝑎𝑛𝑑 ∀ ℎ ∈ 𝐻 such that   x H 𝑥−1 ∈ 𝐻  

Preposition 3∶  

If 𝑥𝐻𝑥−1  ∈ 𝐻   ∀ ℎ ∈ 𝐻  𝑎𝑛𝑑 ∀ 𝑥 ∈ 𝐺 

  Then  𝑥𝐻𝑥−1 ⊆ H ∀ 𝑥 ∈ 𝐺     and   H  ⊆ 𝑥𝐻𝑥−1  

From above two equations we get 

𝑥𝐻 𝑥−1 =   𝐻  

This implies   𝑥𝐻 = 𝐻𝑥 ∀ 𝑥 ∈ 𝐺 

Then every left coset of H in G is right coset of H in G  

That is   𝑥𝐻 = 𝐻𝑥 ∀ 𝑥 ∈ 𝐺 iff H is normal subgroup of G. 
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Definition 8: A group G is said to be simple group if G has exactly two normal 

subgroups H= {e} and H=G. 

Example: 𝑨𝟓 has exactly two normal subgroups then 𝑨𝟓 is simple group. 

Theorem 8.1:   If G is group of prime order p then G is always simple. 

 Solution: if G is group of prime order p then G ≈ 𝑍𝑝 and 𝑍𝑝 has 𝜏(𝑝) normal subgroups 

then G has exactly two normal subgroups  

Then G is simple group. 

Note: the number of positive divisors of n is denoted by 𝜏(𝑛). 

If n=1 then 𝜏(1) = 1.If n>1 then   𝑛 = 𝑝1
𝑟1 . 𝑝2

𝑟2 … 𝑝𝑘
𝑟𝑘  

⇒ 𝜏(𝑛) = (𝑝1
𝑟1 . 𝑝2

𝑟2 … 𝑝𝑘
𝑟𝑘) = (𝑟1 + 1)(𝑟2 + 1) … (𝑟𝑘 + 1) 

Example:   𝑍15is cyclic group of order 15 and 𝑍15 has exactly 𝜏(15) = 𝜏(3)𝜏(5) =

(1 + 1)(1 + 1) = 4 normal subgroups 

⇒  𝑍15 is not simple group. 

Also we can show that if 𝑂(𝐺1) > 1 𝑎𝑛𝑑 𝑂(𝐺2) > 1 𝑡ℎ𝑒𝑛 𝐺1 × 𝐺2 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑖𝑚𝑝𝑙𝑒 

Solution: we already know that with help of above theorem that 𝐺1 × {𝑒2} 𝑎𝑛𝑑 {𝑒1} ×

𝐺2 are the normal subgroups of 𝐺1 × 𝐺2 other than H= {e} and 𝐻 = 𝐺1 × 𝐺2 then 𝐺1 ×

𝐺2 is not simple. 

Definition 9: if 𝑂(𝐺) = 𝑝𝑛. Where p is prime number, Then G is called p-group 

Example: if G is group of order 64 then 𝑂(𝐺) = 64 = 26 is called 2-subgroup. 

Sylow p-subgroup of a finite group (p- SSG):  if G be a finite group and 𝑝𝑛/𝑂(𝐺) but 

𝑝𝑛+1 does not divides O (G) then the subgroup of order 𝑝𝑛 is called sylow p-subgroup  

Example: let 𝑂(𝐺) = 60. 𝑎𝑛𝑑    22/𝑂(𝐺) but 22does not divides O (G) then the 

subgroup of order 𝟐𝟐 = 𝟒 is called 2-ssg 

Cauchy’s theorem for finite Abelian groups:  suppose G is a finite Abelian group and p 

⁄O (G), where p is a prime number. Then their exists 𝒂(≠ 𝒆) ∈ 𝑮 such that 𝒂𝒑 = 𝒆.if G 

is finite abelian group and a positive integer k divides O(G).then G contains a subgroup 

of order k. 

Sylow first theorem  

If G is finite group and 𝑝𝑛 ⁄ 𝑂(𝐺) then G has subgroup of order  𝑝𝑛. 

Example: if G is finite group of order 10.then G has subgroup of order 5 and 25. 

Solution:   Since 𝑂(𝐺) = 100. 𝑡ℎ𝑒𝑛 5/𝑂(𝐺) then G has subgroup of order 5  
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Now 52/𝑂(𝐺) then G has subgroup of order 52. 

Theorem: let  𝐺 = 𝑆20 (symmetric group of order 20!), then find the order of 7-sylow 

subgroups in G. 

Proof   𝐺 = 𝑆20 then 𝑂(𝑆20) = 20!  

                                                            =1.2.3.4.5.6.7.8...13.14.15....20 

                                                            =72(1.2.3 … 6.8 … .13.2.15 … 20) 

                                                              =72. 𝑚  where m =1.2...6.8.....13.2.15...20 and gcd (7, 

m) =1 

Now 72/𝑂(𝑆20)  but 72+1 does not divides 𝑂(𝑆2𝑜). then 𝑆20 has 7-sylow subgroup of 

order 72 = 49. 

Theorem: let 𝐺 = 𝐴20(𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 
20!

2
) and H is 7-sylow subgroup 

of 𝐴20. Then show that 𝑂(𝐻) = 49 and any 7-sylow subgroup of 𝑆20 is subset of 𝐴20. 

Proof: G = A20 and O ( 𝐴20)=
20!

2
 

                                                               =
1 .2 .3…6.7.8…..13.14.15…20

2
 

                                                             =
72(1.2.3…6.8…13.2.14…20)

2
 

                                                             =72. 𝑚     𝑎𝑛𝑑 gcd(𝑚, 7) = 1 

Now 72/𝑂(𝐴20)   But  72+1 does not divides 𝑂(𝐴20).  

Then order of 7-sylow subgroup in 𝐴20 is 72 = 49. Which implies O (H) =49. 

Thus 7-sylow subgroup in 𝑆20  is same 7-sylow subgroup in 𝐴20. 

Then any 7-sylow subgroup of 𝑆20is subset of 𝐴20. 

 Sylow 2nd theorem: 

 Let G be a finite group then any two p-sylow subgroups of G are conjugate. 

That is let H and K are two p-sylow subgroups of G then there exists 𝑥 ∈ 𝐺     such that  

  𝐾 = 𝑥𝐻𝑥−1 .    

Theorem: let 𝐺 = 𝑆3 (symmetric group of order 3!). Then show that any two 2-sylow 

subgroups of 𝑺𝟑 are conjugate. 

 Proof:  let 𝐺 = 𝑆3     then O (𝑆3) = 6 = 2 × 3. 

         Then 2/O (𝑆3)   then 21+1does not divide 𝑂(𝑆3) then 𝑆3 has 2-sylow subgroup of 

order 2. That is the subgroup of order 2 is 2-sylow subgroup of 𝑆3. 
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Now 2-sylow sub group of 𝑆3 are 𝐻1 = { 𝐼, (1,2)}, 𝐻2 = {𝐼, (1,3)},    𝑎𝑛𝑑 𝐻3 = {𝐼, (2,3)}. 

Next, we will show that 𝐻2 𝑎𝑛𝑑 𝐻3 are conjugate. 

Let 𝑥 = (1,2) ∈ 𝑆3 such that 𝑥𝐻2𝑥−1 = (1,2)𝐻2(1,2)−1 

                                                                        = (1, 2) {I, (1, 3)}(1,2)−1 

                                                                         = {(1, 2)(1,2)−1, (1,2)(1,3)1,2)−1} 

                                                                          = {I, (2, 3)}= 𝐻3 

⇒𝐻3 = (1,2)𝐻2(1,2)−1, (1,2) ∈ 𝑆3 

𝑡ℎ𝑒𝑛 𝐻2 𝑎𝑛𝑑  𝐻3  Are conjugates  

Example: show that H= {I, (1, 2)} and K= {I, (2, 3)} are conjugates? 

Solution: let 𝑥 = (1,3) ∈ 𝑆3  

Such that (1, 3) K(1,3)−1 = (1,3){𝐼, (2,3)}(1,3)−1 

                                               = {(1, 3)(1,3)−1, (1,3)(2,3)(1,3)−1} 

                                              = {I, (1, 2) =H  

Then H and K are conjugates.  

Sylow 3rd theorem                                                                                                      

Let G be a finite group and p, a prime number such that p/O(G).Then  number of p-

sylow subgroups  is of the form to1+pk, where k is some non-negative integer  such 

that 1+pk/O(G). 

Example: if 𝑂(𝐺) = 14. then sylow subgroups of order 7 in G can be calculated as. 

Solution: 𝑂(𝐺) = 14 = 2 × 7. 

Now 71/O (G) But 71+1 does not divides O (G) 

Then the subgroups of order 7 are 7-sylow subgroup. 

Then  𝑛7 = 1 + 𝑝𝑘  

Put k=0, then 𝑛7 = 1 𝑎𝑛𝑑1/𝑂(𝐺) then 𝑛7 = 1. 

Put k=1 then 𝑛7 = 8  but 8 does not divides O (G).then 𝑛7 = 8 is not possible for 7-

sylow subgroup of G 

Put k=2 then 𝑛7 = 15 𝐵𝑢𝑡 15/O (G) then 𝑛7 = 15 are not possible for 7-sylow 

subgroup of G 

Similarly k =3, 4, 5, 6...  Are not possible for 7-sylow subgroup of G 
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Then 𝑛7 = 1 then G has unique subgroup of order 7` 

Theorem: if O (G) =21. Then the number of subgroups of order 3 in G can be calculated 

as  

proof: O (G)=21 =3×7 then 31/O(G) but 31+1 does not divides O(G), then subgroups 

of order 3 is 3-sylow subgroups  of G. 

Then 𝑛3 = 1 + 3𝑘  such that 1+3k/O (G) 

Put k=0, then 𝑛3 = 1 and 1/O (G). Then 𝑛3 = 1 is possible for 3-sylow subgroup of G 

Put k=1 then 𝑛3 = 4  but 4does not divides O (G), then 𝑛3 = 4  is not possible for 3-

sylow subgroup of G 

Put k=2 then 𝑛3 = 7 and 7/O (G) then 𝑛3 = 7 is possible for 3-sylow subgroup of G. 

Put k=3 then 𝑛3 = 10 but 10 does not divides O (G), then 𝑛3 = 10 is not possible for 3-

sylow subgroup of G 

Similarly, k=4, 5, 6 ...are not possible for 3-sylow subgroups of G. 

Then 𝑛3 = 1 or 𝑛3 = 7 is possible for 3-sylow subgroup of order 3 of G. 

Theorem: Group G has unique p-sylow subgroup if and only if p-sylow subgroup is 

normal. 

Theorem: if order of group G is 12.then the subgroup of order 3 is normal? 

Proof: since 𝑂(𝐺) = 12 = 22 × 3 then 3/ O (G) But 31+1 does not divide O (G). Then G 

has 3-sylow subgroup of order 3. 

Now 𝑛3 = 1 + 3𝑘  - - - - (1) 

Put k=0 then 𝑛3 = 1 𝑎𝑛𝑑1/𝑂(𝐺)   

Then 𝑛3 = 1 is possible for 3-sylow subgroup  

Put k=1 then 𝑛3 = 4 𝑎𝑛𝑑 4/𝑂(𝐺) 

Then 𝑛3 = 4  is also possible for 3-sylow subgroup  

Then 𝑛3 = 1 𝑎𝑛𝑑 𝑛3 = 4 both are possible for 3-sylow subgroup of G 

Then the subgroup of order 3 of G may or may not be normal 

Theorem: if order of group G is 39 and G is non-abelian, then find number of normal 

subgroups of G. 

Proof; O (G) = 39 = 3×13 and G is non-abelian group. Then G has one subgroup of 

order one, 13 subgroups of order 3, 1 subgroup of order 13 and 1 subgroup of order 

39. 
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Since H= {e} and H=G is always normal subgroups of G, then the subgroups of order 1 

and 39 are normal subgroups of G. 

Subgroups of order 3: 

3/O (G) but 31+1 does not divides O (G), then the subgroups of order 3 is 3-sylow 

subgroups of G. 

Then 𝑛3 = 1 𝑎𝑛𝑑 𝑛3 = 13 both are possible for 3-sylow subgroup  

Then 3-sylow subgroup of G is not unique. 

Then 3-sylow subgroup of G is not normal. 

Subgroups of order 13: 

13/ O (G), but 131+1does not divides O (G).then the subgroup of order 13 is 13 –sylow 

subgroup of G. 

⇒𝑛13 = 1 + 13𝑘 

Put k=0 then 𝑛13 = 1 𝑎𝑛𝑑 1/𝑂(𝐺) then 𝑛13 = 1 is possible for 13-sylow subgroup. 

Similarly k=1, 2, 3 . . . are not possible for 13-sylow subgroup of G. 

Now 13-sylow subgroup of G is unique. 

Therefore, 13-sylow subgroup of G is normal. 

Then G has unique normal subgroup of order 13. 

∴ G has exactly three normal subgroups, one of order 1, one of order 13 and one of 

order 39. 

Theorem: if G is Abelian group of order 40. Then number of subgroups of order 8 in G 

can be calculated as 

Proof: we have 𝑂(𝐺) = 40 = 23 × 5 and G is Abelian group. 

Now 23/O (G), but 23+1 does not divides O (G). Then G has 2-sylow subgroup of order 

8     

⇒ 𝑛2 = 1 𝑎𝑛𝑑 𝑛2 = 5 both are possible for 2-sylow subgroup of order 8.} 

Since G is abelian then 2-sylow subgroup of G is normal. 

Then 2-sylow subgroup of G is unique. 

Then G has unique subgroup of order 8. 

Theorem: show that the subgroups of order 2 are not normal in 𝑺𝟑{symmetric group of 

order 3!}. 
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Proof: let  𝐺 = 𝑆3 then O (G) = 6 = 2×3.  ⇒ 2/O (G) but 21+1 does not divides O (G). 

Then the subgroup of order2 is 2-sylow subgroup of G and 𝑺𝟑 has 3 subgroup of order 

2. 

Then 2-sylow subgroup of 𝑆3 is not normal. 

Then the subgroups of order 2 of 𝑆3 are not normal. 

Theorem: show that the subgroup of order 4 of 𝐴4 is normal subgroup of  𝐴4. 

Proof:  𝑂(𝐴4) =
4!

2
= 22 × 3. ⇒22/𝑂(𝐴4) but 22+1 does not divides 𝑂(𝐴4). 

Then the subgroup of order 4 of 𝐴4 is 2-sylow subgroup of 𝐴4. 

{𝑛2 = 1 + 2𝑘. Then 𝑛2 = 1 𝑎𝑛𝑑 𝑛2 = 3 both are possible for 2-sylow subgroup of  𝐴4} 

Since 𝐴4 have exactly 3 elements of order 2 and no element of order 4. 

Then 𝐴4 has unique subgroup of order 4. 

Then the subgroups of order 4 or 2-sylow subgroup of  𝐴4 is unique.  

Then 2-sylow subgroup of 𝐴4 is normal. 

Therefore, the subgroup of order 4 of 𝐴4 

Conclusion 

(1) Every group has exactly one element of order one and this element is unique 

(2) Symmetric group of order 20!  has sylow 7-subgroup of order  72 

(3) Sylow 7-subgroup of symmetric group of order 20! Is same as sylow 7-

subgroup of alternative group of order 
20!

2
 

(4) Any two sylow 2-subgroups of symmetric group of order 6 are conjugate. 

(5) Group of order 14 has unique sylow 7- subgroup of order 7. 

(6) If G is non-abelian group of order 39 then G has exactly three normal 

subgroups of order 1, 13 and 39. 

(7) Any sylow 2-subgroups of order 2 are not normal in symmetric group of 

order 6. 

(8) The subgroups of order 4 is normal subgroup of alternative group of 12  
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